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The second-order MacCormack method and <he third-order Rusanov ard Kutler- 
Warming-Lomax methods are applied to the inviscid I.-d Burgers’ equation, wedge 
Aow and the problem of shock reflection from a rigid boundary. The numerical solution 
in each case is compared to the exact solution and the quantitative estimates of accuracy 
are obtained. Results of this study show that the third-order Kutler-Warming-Lomax 
or the Rusanov methods tuned for minimum dissipation or minimum dispersion provide 
the most accurate solution in each of the examples considered. 

TNTRODUCTION 

The direct integration of the equations of motion governing fluid fnow has 
become common place since the advent of the high-speed digital computer. The; 
number of investigators in the field has grown and the number of finite diEerence 
methods available has increased until the selection of a numericai method for a 
given problem has become a difficult part of the problem’s solution. 

This study compares the second-order MacCormack [I I], third-order 
[13], and the third-order Kutler-Warming-Lomax t6] methods on the basis oi‘ 
execution time, resolution, and ease of coding. All of the methods tested are 
explicit and all applications were to hyperbolic partial differential equations, that is.. 
unsteady methods used to determine steady-state flows or spatially steady super., 
sonic flows whose downstream solutions can be treated as initial value problems. 

‘The examples treated in this paper all involve propagation of discontintlities 
either in two-dimensional space or time and one space dimension. The examples 
chosen include the propagation of a double discontinuity in 1--d space using 
Burgers’ equation [5], the solution of the equa.tions of simple wedge flow using a 
radially asymptotic approach, and the reflection of a shockwave from a solid 
boundary in a supersonic stream. The exact details of each of these problems js 
discussed in later sections. 
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Emery [3] has evaluated several first- and second-order methods including the 
Lax [8], Rusanov first-order [1,4], Lanshoff [lo], Lax-Wendroff [9] and Richtmeyer 
[12] techniques. He concluded that, of the methods tested, the first-order Rusanov 
scheme provided the most satisfactory results. Emery’s study included propagation 
of a one-dimensional shockwave through a perfect gas and its reflection from a 
wall, flow over a two-dimensional flat faced step and a circular cone in a high 
Mach number flow. Taylor, Ndefo, and Masson [15] have recently written a paper 
in which they have evaluated the first-order methods of Godunov [4] and Rusanov, 
the second-order methods of MacCormack and Richtmeyer, and the third-order 
method of Rusanov. Their investigation included results from both inviscid and 
viscous examples. The inviscid examples, however, were confined to a propagating 
shock wave in one dimension, a rarefaction wave and a contact discontinuity. 
Taylor, Ndefo and Masson concluded that of the methods examined, the third- 
order Rusanov method provided the most accurate results although it does require 
at least twice as much computer time as the first-order methods. 

Kutler, Warming, and Lomax recently introduced a noncentered third-order 
method which they used in calculating space shuttle flow fields. In addition they 
attempted to “tune” the method to minimize either dispersion or dissipation 
produced in the solution. This was achieved by varying the required stability 
parameter of third-order methods to cause the phase shift or damping to be a 
minimum at each point in the computation. The results of their study appear 
to show that the minimum dispersion case provides the best solution. 

In the following sections, a brief review of each differencing method is presented, 
application to typical problems is made, and finally, results and conclusions based 
on this study are discussed. 

Numerical Methods 

The numerical techniques used in this study have been developed for hyperbolic 
systems of the form: 

where E and F may be IZ component vectors and x may be of arbitrary dimension. 
The techniques are based upon the Runge-Kutta method and are explicit in 
advancing the solution forward in time. 

MacCormack’s Method 

MacCormack [I l] developed a noncentered second-order version of the Lax- 
Wendroff method which has been used extensively in solving gas dynamic problems. 
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This technique consists of a two-step predictor-corrector sequence of the form: 

where the tilde represents values at the intermediate step and 

A Fj = Fj+I - Fj 9 

YFj = Fj - FjsI ~ 
34 

‘The value of E can be either 0 or 1. If E = 0, the predictor uses a forward difference 
and the corrector uses a backward difference on Fj . If E = 1 the differencing in the 
predictor and corrector is reversed. Only the case where E = 0 was evaluated in 
this study. 

The stability of this method was investigated in detail by MacGormack and his 
results show that stability is assured if 

Iv/ d 1, (4) 

where Y is the Courant number given by 

v = o(AT/AX), (5) 

and CJ represents the maximum eigenvalue of the Jacobian matrix Zc/X sh,ch 
arises in the stability analysis of Eq. (1). 

Rusanov [ 131 and Burstein and Mirin [2] simultaneously developed a tbird~ord~r 
scheme based upon application of the Runge-Kutta method. This method uses. 
central differencing and when applied to Eq. (1) becomes 

- 5 [Ej”,, - 4Ej”,, + 6Ej1’ - 4E,?, + E;j& (6j 
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The omega term in the third step is a fourth-order difference required for stability. 
Since it is fourth-order, the third-order accuracy of the method is unaffected by its 
addition. 

The stability analysis of this technique has been carried out in detail by Burstein 
and Mirin. Their results show that stability of the system is assured if 

and 
4v2 - v4 < w < 3. (7) 

The Kutler-Lomax- Warming (K-L-W) Method 

Kutler, Lomax, and Warming [6] have developed a noncentered version of the 
Rusanov scheme. There are two major differences between this technique and the 
original third-order Rusanov method. 

The K-L-W method uses noncentered differences and uses the MacCormack 
method (evaluated at 2/3 fl T) for the first two steps while the Rusanov third level 
is used. The other difference is that the fourth-order w  term has been differenced in 
a conservative manner so that the value of w  can be altered during the calculations. 
If the w  term is differenced as in the Rusanov method and altered during compu- 
tation, incorrect wave speeds are produced in the numerical solution. 

The K-L-W method applied to Eq. (1) takes the form: 

Ej’l’ = Ej:j” - ;+; [(I - c) F& - (1 - 24 Fj” - EF;-J, 

.!2, = 4” + Ei’l’ 
3 2 

- ; 2 [EF;$ - (1 - 2~) Fj’l’ + (e - 1) F/$1, 

where functionally the w  values are represented by 

(8) 

(9) 



COMPARISON OF INVISCID FLUID SCKUTIOX3 

where 

This method has the same stability bounds as the Rusanov method. 
Mutler, Lomax, and Warming tried to “tune” the two w  parameters in an atrempt 

to minimize either the dispersion or dissipation present at each step in the oal- 
culation. The choice of either minimum dispersion or minimum dissipation deeer- 
mines the precise functional form as noted in Eq. (9). These functional forms are 
determined by an analysis of the linear first-order wave equation 

Application of the K-L-W method to this equation results in the modified partial 
differential equation 

The term in the modified equation representing dispersion is a Seth derivative term 
while the fourth derivative represents dissipation. If one wishes to reduce :he 
dissipation of the method, the w  parameter should be selected to minimize the 
fourth derivative term. The obvious choice is 

which is the lower stability bound as predicted by linear theory. If minimtim 
dispersion is desired, the coefficient of the fifth derivative is set equal :n 2erc 
giving 

ic) = (49 + 1)(4 - v”) 
5 ~ 

!;Lg 

Results obtained by Kutler, Warming, and Lomax show that an improvement 
in the solution is obtained by altering LO according to either of lhese sch.emes. It 
should be noted that the value of v appearing in Eq. (9) and used in Eq. {I@) is 
the local value of the Courant number based on an average of the eigenvalues at ihe 
mesh points in use for that calculation. The v dues are obtained by using Eq. (i0) 
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and the appropriate values of w  are then determined through Eq. (13) or (14). 
This method accounts for the changes in eigenvalue structure encountered during 
the computation procedure. 

SOLUTION OF THE MODIFIED BURGERS' EQUATION 

The hyperbolic form of the equation introduced by Burgers [5] is a valuable aid 
for use in studying the behavior of a given numerical method when applied to a 
nonlinear equation. A particularly useful analog of the fluid flow equations is the 
modified or inviscid form of the Burgers equation 

(15) 

Kutler [7] has successfully used this equation as an analog of the inviscid Euler 
equations and studied solutions produced using various numerical algorithms. 
In particular, Kutler examined first- and second-order methods used in solving gas 
dynamic problems. He concluded that MacCormack’s method provided the most 
satisfactory results from among those he examined. Since that investigation, 
third-order methods have been developed and it is of importance to compare 
solutions of Burgers’ equation obtained using third-order methods with those 
obtained using second-order methods. 

The problem studied is to determine the solution of Eq. (15) subject to the 
initial conditions, 

u=o x > Xl ) 

u = u1 Xl > x > x2 ) (16) 
24 = uo x <x2, 

where u2 > ul. Since this problem represents the intersection of two discon- 
tinuities, the exact solution must be represented in two regions: the first region is 
prior to the intersection of the discontinuities and the second is after the inter- 
section. The exact solution in these regions is 

Region I 

u(x, t) = 0 tx - xdlt > u,P, 
u(x, t) = u, x2 + ((Ul + %?)/2) t < x < Xl + u,t/2, 
u(x, t) = u2 tx - x,)/t -=c tu1 + 4/2; 

Region 2 

u(x, t) = 0 x/t > Q/2, 
u(x, t) = ug x/t < u,/2. (17) 
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The first double shock considered was with u1 = 2 and 24 = 5. The mesh used 
was 100 points in length in the x-direction while x1 = 36 and x2 = 1.5. 

The results of applying MacCormack’s and Rusanov’s methods to this problem 
are shown in Fig. 1. The Courant number is unity in both cases while the stability 

WAVE POSITION 

FE. 1. Solution of Burgers’ equation for 5-2 double shock dT,‘d.r = 0.2, 1’ = 1.0. 

parameter in the Rusanov method is chosen to be 3 as required by the linear 
stability analysis. Both methods predict the wave position and amplitude correctly. 
The results show that better wave resolution is provided by MacCormack’s 
method at least for the effective Courant numbers considered. It should be noted 
that the effective Courant number is 0.4 at the lower wave for this case. The wave 
front resolution at the time of intersection of the two waves is particularly sharp 
using MacCormack’s method. There is no overshoot on the wave front, and th.e 
wave is spread over approximately two cells. This is probably due to the 
noncentered differencing in this method. 

Figures 2 an.d 3 show results obtained for the same problem run with a Courant 
number of 0.5 and the w  parameter at its upper and lower bounds for usanov’s 
method, For this particular problem the effective Courant number is 0.2 at the Icwer 
discontinuity. The effect of changing the mesh size becomes apparent in this case. 
Contrary to the previous conclusion, either of the Rusanov solutions is superior 
to that obtained using MacCormack’s method. The third-order technique produces 
a better solution over the range of smaller Courant numbers encountered. 

An objective comparison of results using MacCormack’s, Rusanov’s, and the 
K-L-W methods can only be made if a quantitative measure of the accuracy of the 
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WAVE POSITION 

FIG. 2. Solution of Burgers’ equation for 5-2 double shock MacCormack Method AT/Ax = 
0.1, v  = 0.5. 

0 0 w=o.93?5 
-EXACT SOLUilON 

30 WAVE POSITION 

FIG. 3. Solution of Burgers’ equation for 5-2 double shock Rusanov Method AT/Ax = 0.1, 
?J = 0.5. 
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numerical solution can be obtained. Since the exact solution to Burgers’ equation is 
known, a measure of the accuracy can be 

Error = 
ss 1 Ucomputed - Uexact 1 & dt. v-9 t II: 

Using this definition of error, a 20 - 2 discontinuity was used for initial conditions, 
and solutions of the Burgers’ equation were obtained using the three methods 
being evaluated, including the minimum dispersion and dissipation cases of the 
K-L-W method. 

The solutions obtained for fixed w  are shown in Figs. 4 and 5, and the minimum 
dispersion and dissipation cases are shown in Fig. 6. The results obtained using 
the tuned thud-order methods are clearly better than those using constant o. 
However, the MacCormack solution appears to be better than either of the 
Rusanov or the K-L-W cases. This is apparent not only by visual inspection of the 

0 MINIMUM 
DlSSlPATlOb 

D MINIMUM 
DISPERSIOb 

40 4-1 48 52 56 e 
POSITION - x 

FIG. 6. Solution of Burgers’ equation for 20-2 double shock, Tuned K-L-W method d T/Ax = 
0.05, v  = 1.0. 
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results, but the error estimate based on Eq. (18) and tabulated in Table I also shows 
this to be the case. The difference between the minimum dispersive and minimum 
dissipative cases is not large and one gains little in selecting one over the other in 
this example. 

TABLE I 

Comparison of Results for Burgers’ Equation 

Differencing 
method 

Relative computationai Estimate of 
time required err5r [Eq. C.l8)] 

- 

5-2 discontinuity problem 

ivfacCormack u = 1 I - 

Rusanov L’ = 1 (tj ZY 3 2.25 

20-2 discontinuity problem 

MacCormack ~1 = I 
Rusanov c = 1 ClJ=; 

K-L-W C=l w=3 
K-L-W 2=1 w variable 

(minimum 
dispersion) 

K-E-W L’=f w variable 
(minimum 
dissipation) 

1 48.738 
2.25 78.098 

2.25 46.651 
2.758 57.773 

2.758 52.079 

The Rusanov and K-L-W cases show nearly the same error with the K-L-Vi 
method being somewhat more accurate. In view of the ease of programming and 
the slight improvement in the solution, the K-L-W technique would be the better 
choice in a practical application. 

WEDGE FLOW 

Supersonic flow over a two-dimensional wedge provides a very simple exampie 
requiring the solution of the equations of motion. Again, valid comparisons of 
accuracy can be made since the exact solution for wedge flow is known. 
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The equations of motion governing inviscid flow of a perfect gas over a pointed 
two-dimensional wedge are 

acpuO) 
ax 

+ w + ~“7 = o 
ay 9 

(19) 

f&-Z- 22 + v2 

Y--l 
PIP + -----j- - 

For this study, these equations were transformed into a polar coordinate system 
with polar radius measured from the wedge vertex and polar angle measured from 
the wedge centerline serving as independent variables. However, the rectangular 
velocity components as written in Eq. (19) were used rather than polar components. 
The polar coordinates (I’, 19) form a more convenient set in which to apply the 
boundary conditions at the wedge surface. At the body surface, pure reflection 
was used and at least for the case of wedge flow proves to be satisfactory as it is 
an exact boundary condition. 

This flow is a conicai flow and a solution is obtained by integrating in the radial 
direction starting from some initial data surface until changes in the flow variables 
along radial lines for each integration step become smaller than some acceptable 
limit. Pressure was used as a test variable and the difference in pressure for ten 
consecutive integration steps was required to be less than 0.1 T! at each point in 
the computational mesh. If this criterion was satisfied, the solution was considered 
to have converged. 

The results provided by solving Burgers’ equation have shown that acceptable 
solutions can be obtained with either second- or third-order methods if the Courant 
number is near one. For this reason results for a Courant number of 0.3 are 
presented since the off design performance of each method is of major interest here. 

Figure 7 shows the pressure distribution obtained for a wedge half angle of 7.5” 
at a free stream Mach number of 2 using both MacCormack’s and the K-L-W 
method. For MacCormack’s method, a particularly large number of oscillations 
occur on both sides of the shock at this low Courant number. The shock wave is 
positioned very well in comparison to the exact location, and the shock layer 
pressures are correct. The large oscillations near the shock do cause significant 
deviations from the exact solution and lead to a large error estimate if a measure of 
the quality of the solution is taken as 

Error = c I P(j) - Pexact I. (20) 
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0 MAC CORir\ACK 
d K-I-W UI = ‘).63t1 

--- EXACT 

20 - 

16 - 

12 - 

a- E I ,‘IO,i,l, ii,, 
WEDGE SURFACE 

I 
4 I I I I 

0.08 0.09 0.10 0.11 0.12 0.13 0.14 c.15 
DIMENSIONLESS PRESSURE 

FIG. 7. Wedge flow solution A&‘AB = 0.3, Y = 0.3, 100 iterations. 

That is, the difference between the calculated and exact solutions is determined at 
each mesh point and this difference is summed over all points in the field. The total 
error for this particular case was 0.0904. 

LJsing the M-L-W method for a Courant number of 0.3 with the .S parameter 
held constant and equal to its value at the lower stability bound, the shock is 
spread over approximately three mesh intervals and is not as sharply defined as 
that produced by the MacCormack method. However; the absence of oscillations, 
both pre- and post-shock, makes this a better solution. The deviation from the 
exact solution as predicted by Eq. (20) is 0.0320 which is significantiy lower than 
the previous case. 

Figure 8 presents the solution using the tuned K-L-W method for ~~i~~~~rn 
dispersion and dissipation respectively. The results for both cases are similar with 
small differences in peak over shoot and shock sharpness appearing. The deviation 
from the exact solution of the minimum dissipation case was calcuiated to be 
0.03Q7 while that for minimum dispersion was 0.0443. As in the soiution to Burgers’ 
equation, the K-L-W method tuned for minimum dissipation provides the best 
results, However, the fixed w case is nearer th.e exact solution than that obtained 
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16 

12 

a 

4 
0 

0 MINIMUM DISSIPATION 
d MINIMUM DISPERSION 

- - EXACT 

7 , , , , , , ,  I,,!,,Il,llO, IIT, 
WEDGE SURFACE 

I I I I I I 
.oa 0.09 0.10 0.11 0.12 0.13 0.14 0.1 

DIMENSIONLESS PRESSURE 

FIG. 8. Wedge flow solution using tuned K-L-W method At/AS = .3, Y = .3. 

using minimum dispersion. Since the differences among the third-order solutions 
are small, satisfactory results should be obtained using any of the three. 

SHOCK REFLECTION FROM A SOLID BOUNDARY 

An additional example denoting the importance of the variation of local Courant 
number is provided by reflection of an oblique shock wave from a solid boundary. 
This is a well defined problem in which the solution for the reflected shock wave 
angle and the downstream flow is uniquely determined by the downstream 
boundary condition. The solution is termed a regular reflection if the reflected 
shock is within the attached shock region for two-dimensional flow, and it is 
termed Mach reflection if the reflected shock angle is required by the downstream 
boundary conditions to exceed the maximum allowable angle for an attached shock. 
The Mach reflection case is not of interest since the steady flow equations become 
elliptic in a portion of the downstream flow field. The regular reflection case retains 
the hyperbolic character of the equations throughout. 
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The procedure used in obtaining a solution to th e slxxk reflection problem is KC 
initialize conditions along an x = constant line. The ?c-coordinate is assumed 
positive in the direction of the original free stream which is parallel to the wall. 
Initial data input include both pre- and post-chock values of the dependent 
variables in the flow field while the usual reflection boundary condition is used 
at the solid boundary. 

With rectangular coordinates along and normal to the original free stream, the 
maximum step size in the integration process is determined by the solutien down- 
stream of the incident shockwave. Therefore: a set of initial conditions producing 
a shock close to the detachment region is important in producing a large variation, 
in eigenvalue structure. This problem produces a more severe test of a ditferencing 
method than either the wedge or the solution of Burgers’ equation. The method. 
must work well for a wide variation of mesh ratios and in addition muss. operate 
near the boundarv where the character of the describing Eqs. (19) changes From 
hyperbolic to elliI&. It should be noted, however, that the influence of the mesh 
ratio size and the switch from hyperbolic to elliptic are c!@se!y related since bdh the 

maximum mesh ratio and the character of the equations are determined from the 
eigenvalues. 

Figures 9-13 present results obtained for an original free stream Mach number 
of 4. and an initial shock wave angle of 34” with respect to the free stream. 
The maximum allowable mesh ratio in each region is 

AX 
i) 

*p - C2 

Ay mas 1 UL’ j + cqlie f [’ - ,y ’ 

where c is the speed of sound. 

AX 
Region I F, 

t ) 
= 3.96843, 

max 

The mesh ratio used was 0.20, approximately 20 yd of the maximum ellowabie for 
stability in Region II. 

It is of interest to alter rhe Rusanov method and make it either minimum dis- 
persive or minimum dissipative by conservatively differencing the omega term 
in the third level. The third level of the K-L-W and Rusanov cases are 
then identical for cases where the omega parameter is either fixed or variable 

Figure 9 shows results using MacCormack’s method while Figs. 10 and 11 present 
calculations using the K-L-W method with the stability parameter at its extremes. 

581/15/I-2 
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EXACT 

BODY SURFACE 

ABOVE SURFACE 

0 10 20 30 40 50 60 70 SO 50 100 110 !iO 130 140 150 160 170 3 
x - POSITION 

FIG. 9. Shock reflection problem, MacCormack method dxjdy == 0.2, 8, = 34”, A& = 4.0. 

“0 90 --_-- 

,” SO 
1 

Y,m 
2 
i 60 
% 

R 50 BODY SURFACE 
5 EXACT SOLUTION 
z 
0 40 

5 
w 30 
I 

E 20 

0 
0 10 20 30 40 50 60 80 1W 110 120 130 140 150 

x-POSITION 

SURFACE 

-7ii-k 10 

FIG. 10. Shock reflection problem, K-L-W method. o = 3.0, dx,‘dy = 0.2: es = 34”. 
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BODY SURFACE 

4 my ABOVE SURFACE 

x-POSITION 

FIG, 11. Shock reffecrion problem, K-L-W method. w = 0.4584, As;& = 0.20, d, = Moe 

FIG. 12. Shock reflection problem, minimum dissipation. Ax,‘Ay = 0.2, 8, = 34”: Mm 
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ROW SMFACE 4 by ABOVE SURFACE 

- RUSANOV 
---- KLW 
--- EXACT 

x - POSITION 
0 

FIG. 13. Shock reflection problem, minimum dispersion. A,r,lAy = 0.20, b’, = 34”, Mm = 4.0. 

Results obtained using Rusanov’s method with fixed omega are not included since 
they are essentially identical for this problem. The K-L-W solution with cr) = 3.0 
clearly presents a closer approximation of the exact solution if average values of 
pressure are used where the high frequency oscillations occur. This behavior is 
common to the K-L-W and Rusanov methods when the Courant number is 
relatively low and the upper limit value of w  is used. Figure 12 presents results using 
both the Rusanov and K-L-W methods tuned for minimum dissipation while 
Fig. 13 shows results for minimum dispersion. The best solution obtained is clearly 
the minimum dispersion case. It has the least overshoot of any of the techniques 
evaluated and still properly positions the shock waves. It should be noted that no 
estimate of the error was made for this problem. If an incident shock wave angle 
higher than 34” is used, the minimum dissipation calculations immediately become 
unstable. This is due to the absence of sufficient numerical damping coupled with 
operation near the elliptic boundary of the system. The minimum dispersion and 
dissipation solutions for this case show that Rusanov’s method actually produces 
a better result than the K-L-W method. The difference is small but the Rusanov 
method produces less overshoot when it is tuned. 

CONCLUSIONS 

The comparison of results obtained using MacCormack’s and either the K-L-W 
or Rusanov methods shows that second-order methods give acceptable results for 
most cases. When operating near a Courant number of one, the second-order 
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MacCormack method provides the best results from among those tested for the 
examples investigated in this paper. Third-order techniques provide the best 
results for the same example problems when the Courant number varies appreciably 
In the computational mesh. 

The K-L-W method with minimum dissipation provided excellent resuiis for 
the inviscid Burgers’ equation and wedge Rows but was not a satisfactory me,thod 
for the shock reflection problem. The absence of numerical damping causes unac- 
ceptable behavior when rapid changes in the dependent variable are encountered 
such as shock waves or other discontinuities. Of the third-order methods tested, 
the minimum dispersion K-L-W or Rusanov method provides the most accurale 
results over the widest range of effective Courani numbers. This is consistent with 
conclusions presented in 161. However, problems involving convection which tic 
not have discontinuities or other rapid changes in the dependent variabies appxr 

to support a different conchtsion [I]. 
It is recommended that the tuned minimum dispersion version of either the 

K-L-W or Rusanov technique be used for computations in problems which have 
large variations in the eigenvalue structure. The K-L-W method is recommended. 
over the Rusanov method due to simplicity in programming even though 
slightHy better results are obtained using the Latter technique. 

It should be noted that the results presented here are compared on the basis of 
the same number of grid points in the computational field. If the techniqires are 
compared on the basis of equal computational times, then better spatial resolnt~on 
can be obtained with lower order methods. The overall sobttion accuracy shocid 
be comparable for both second- and third-order methods in that event. 
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